Ammonium glufosinate and triazine herbicides have side effects on soil microorganisms and pathogens

  • I. Storchous Institute of Plant Protection of NAAS, 33, Vasilkovskaya str., Kyiv, 03022, Ukraine
  • Yu. Stefkivska Ukrainian institute for plant variety examination, General Rodymtseva st., 15, Kyiv, 02000, Ukraine
Keywords: ammonium glufosinate, thiazine herbicides, biological activity, pathogens, soil microorganisms


Goal. Analysis and synthesis of research results regarding the beneficial and negative side effects of ammonium glufosinate and thiazine herbicides on microorganisms.

Methods. System-analytical, abstract-logical, empirical.

Results. Information on the side effects of herbicides with the content of the active substance glufosinate ammonium and derivatives of thiazine herbicides is given. One of the side effects of herbicides that attracts attention is their biological activity. The biological activity of herbicides goes beyond the effects on target organisms and, thus, herbicides can influence the plant-pathogen interaction through their effect on the causative agent or on the surrounding soil microorganisms, including symbiotic relationships. As a side effect, both a decrease and an increase in diseases caused by phytopathogens that affect leaves, stems or roots are established. However, in some cases, the results obtained in in vitro experiments differed from the results obtained in field conditions in vivo or on a host plant. The phenomenon of the manifestation of side effects of herbicides was first discovered in the early 1940s and began to be studied in more detail since 1960.

Conclusions. Generalized information about the history, studies of the side effects of herbicides on different cultures and in different conditions in the world. It is important that such effects are not fully studied, and these mechanisms attract the attention of scientists for their further research. Future studies are planned to be carried out using high-precision methods, such as chip-based technologies, to study all the mechanisms involved in the pathogen-plant interaction, which are modulated by herbicides. This trilateral relationship today is studied as a molecular and biochemical cross-linkage between a plant and a pathogen, a plant and a herbicide, as well as a pathogen and a herbicide. Active studies by foreign scientists of the side effects of herbicides show that in Ukraine, as an agrarian state, it is necessary to purposefully investigate the effect of herbicides on soil microorganisms and pathogens to optimize the use of plant protection products in agricultural production.


Smith D.A. (2006). Interactions between chemical herbicides and thecandidate bioherbicides Microsphaeropsis amaranthi. Smith, D.A. & Hallett, S.G. Weed Science. 2006. No 54, P. 197-201. [in English].

Duke S.O., Cedergreen N., Velini E.D. Belz R.G. (2006). Hormesis: Is it an important factor in herbicide use and allelopathy? Outlooks in Pest Management, 2006. No 17. P. 29-33. [in English].

Calabrese E.J. & Baldwin L.A. (2002). Defining hormesis. Human and Experimental Toxicology, 2002. No 21. P. 91-97. [in English].

Kortekamp A. (2010). Side effects of the herbicide glufosinate ammonium on Plasmoparaviticola and other fungal pathogens. In: Proceedings of the 6th International Workshop of Grapevine Downy and Powdery Mildew, Calonnec, A.; Delmotte, F., Emmet, B.; Gadoury, D.; Gessler, C.; Gubler, D.; Kassemeyer, H.-H.; Magarey, P.; Raynal. M.; Seem, R. (Eds.), 2010. Р. 13-15. [in English].

Hoerlein G. (1994). Glufosinate (Phosphinothricin), a natural amino acid with unexpected herbicidal properties. Reviews of Environmental Contamination and Toxicology, 1994. No 138. P. 73-145. [in English].

Nilsson M.T., Krajewski W.W., Yellagunda S., Prabhumurthy S., Chamarahally G.N., Siddamadappa C., Srinivasa B.R., Yahiaoui S., Larhed M., Karlйn A., Jones T.A & Mowbray S.L. (2009). Structural basis for the inhibition of Mycobacterium tuberculosis glutamine synthetase by novel ATP-competitive inhibitors. Journal of Molecular Biology, 2009. No 393. Р. 504-513. [in English].

Krogmann D.W., Jagendorf A.T. & Avron M. (1959). Uncouplers of spinach chloroplast photosynthesis phosphorylation.Plant Physiology, 1959. No 34. P. 272-277. [in English].

Devine M.D., Duke S.O. & Fedtke C. (1993). Physiology of Herbicide Action, Englewood Cliffs, 1993. [in English].

Hess F.D. (2000). Light-dependent herbicides: an overview. Weed Science, 2000. No 48. P. 160-170. [in English].

Murakami T., Anzai H., Imai S., Satoh A., Nagaoka K. & Thompson C.J. (1986). The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Molecular and General Genetics, 1986. No 205. P. 42-50. [in English].

Thompson C.J., Movva N.R., Tizard R., Crameri R., Davies J.E. & Lauwereys M. (1987). Characterization of the herbicide resistance gene bar from Streptomyces hygroscopicus. EMBO Journal, 1987. No 6. P. 2519-2523. [in English].

Wang Y., Browning M., Ruemmle B.A., Chandlee J.M. & Kausch A.P. (2003). Glufosinate reduces fungal diseases in transgenic glufosinate-resistant bentgrasses (Agrostis spp.). Weed Science, 2003. No 51. P. 130-137. [in English].

Liu C.A., Zhong H., Vargas J., Penner D. & Sticklen M. (1998). Prevention of fungal diseases in transgenic, bialaphos- and glufosinate-resistant creeping bentgras (Agrostispalustris). Weed Science, 1998. No 46. Р. 139-146. [in English].

Ahn I.P. (2008). Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease protection in bar-transgenic rice. Plant Physiology, 2008. No 146. Р. 213-227. [in English].

Uchimiya H., Iwate M., Nojiri C., Samarajeewa P.K., Takamatsu S., Ooba S., Anzai H., Christensen A.H., Quail P.H. & Toki S. (1993). Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctoniasolani). Nature Biotechnology, 1993. No 11. Р. 835-836. [in English].

Ahmad I., Bisset J. & Malloch D. (1995). Effect of phosphinothricin on nitrogen metabolism of Trichoderma species and its implications for their control of phytopathogenic fungi. Pesticide Biochemistry and Physiology, 1995. No 53. Р. 49-59. [in English].

Shan W., Marshall J.S. & Hardham A.R. (2004). Gene expression in germinated cysts of Phytophthoranicotianae. Molecular Plant Pathology, 2004. No 5. Р. 317-330. [in English].

Grenville-Briggs L.J & Van West P. (2005) The biotrophic stages of oomycete-plant interactions. Advances in Applied Microbiology, 2005. No 57. Р. 217-243. [in English].

Grenville-Briggs L.J., Avrora A., Bruce C.R., Williams A., Birch P.R.J. & Van West P. (2005). Elevated amino acid biosynthesis in Phytophthora infestans during appressorium formation and potato infection. Fungal Genetics and Biology, 2005. No 42. Р. 244-256. [in English].

Kortekamp A. (2008). Knocked out with Basta®! – Are herbicides effective against downy mildew of grapevine? Journal of Plant Diseases and Protection, Special Issue XXI, 2008.Р. 107-112. [in English].

Albrecht M. & Kortekamp A. (2009). The in vitro effect of the herbicide Basta® (Glufosinate ammonium) on potential fungal grapevine pathogens. European Journal of Horticultural Science, 2009. No 74. Р. 112-117. [in English].

Duan W.J., Zhang X.Q., Yang T.Z., Dou X.W., Chen T.G., Li S.J., Jiang S.J., Huang Y.J. & Yin Q.Y. (2010). A novel role of ammonia in appressorium formation of Alternariaalternata (Fries) Keissler, a tobacco pathogenic fungus. Journal of Plant Diseases and Protection, 2010. No 117. Р. 112-116. [in English].

Eshel D., Miyara I., Ailing T., Dinoor A. & Prusky D. (2002). pH regulates endoglucanase expression and virulence of Alternaria alternata in persimmon fruits. Molecular Plant-Microbe Interactions, 2002. No 15. Р. 774-779. [in English].

Prusky D., McEvoy J.L., Leverentz B. & Conway W.S. (2001). Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Molecular Plant-Microbe Interactions, 2001. No 14. Р. 1105-1113. [in English].

Alkan N., Fluhr R., Sherman A. & Prusky D. (2008). Role of ammonia secretion and pH modulation on pathogenicity of Colletotrichumcoccodes on tomato fruit. Molecular Plant-Microbe Interactions, 2008. No 21. Р. 1058-1066. [in English].

Chen S.J. & Kao C.H. (1996). Ammonium accumulation in relation to senescence of detached maize leaves. Botanical Bulletin of Academia Sinica, 1996. No 37. Р. 255-259. [in English].

Chen S.J., Hung K.T. & Kao C.H. (1997). Ammonium accumulation is associated with senescence of rice leaves. Plant Growth Regulation, 1997. No 21. Р. 195-201. [in English].

Trebst A. (2008). The mode of action of triazine herbicides, In: The triazine herbicides: 50 years revolutionizing agriculture, LeBaron H.M., McFarland J.E. & Burnside O. (Eds.), 2008. Р. 101-110. Elsevier. Oxford (UK).

Curl E.A., Rodriguez-Kabana R. & Funderburg H.H. (1968). Influence of atrazine and varied carbon and nitrogen amendments on growth of Sclerotium rolfsii and Trichoderma viride in soil. Phytopathology, 1968. No 58. Р. 323-328. [in English].

Bozarth G.A. & Tweedy B.G. (1971). Effect of pesticides on growth and sclerotial production of Scerotium rolfsii. Phytopathology, 1971. No 61. Р. 1140-1142. [in English].

Kabana R.R. & Curl E.A. (1970). Nontarget effects of pesticides on soilborne pathogens and diseases. Annual Review of Phytopathology, 1970. No 18. Р. 311-321. [in English].

Rattanakreetakul C., Korpraditskul V. & Chamsawarng C. (1990). Side effects of some herbicides to Fusarium moniliforme and its antagonistic microorganisms. Kasetsart Journal (Natural Science Suppl.), 1990. No 24. Р. 41-48. [in English].

Abdel-Fattah H.M., Abdel-Kader M.I.A. & Hamida S. (1983). Selective effects of two triazine herbicides on Egyptian soil fungi. Mycopathologia, 1983. No 82. Р. 143-151. [in English].

Beam H.W., Curl E.A. & Rodriguwz-Kabana R. (1977). Effects of the herbicides fluometuron and prometryn on Rhizoctonia solani in soil cultures. Canadian Journal of Microbiology, 1977. No 23. Р. 617-623. [in English].

Casale W.L. & Hart L.P. (1986). Influence of four herbicides on carpogenic germination and apothecium development of Sclerotinia sclerotiorum. Phytopathology, 1986. No 76. Р. 980-984. [in English].

Isakeit T. & Lockwood J.L. (1989). Lethal effect of triazine and other triazine herbicides on ungerminated conidia of Cochliobolus sativus in soil. Soil Biology and Biochemistry, 1989. No 21. Р. 809-817. [in English].

Russin J.S., Carter C.H. & Griffin J.L. (1995). Effects of grain sorghum (Sorghum bicolor) herbicides on charcoal rot fungus. Weed Technology, 1995. No 9. Р. 343-351. [in English].

Ries S.K., Chmiel H., Dilly D.R. & Filner P. (1967). The increase in nitrate reductase activity and protein content of plants treated with simazine. Proceeding of the national Academy of Sciences USA, 1967. No 58. Р. 526-532. [in English].

Heydari A., Misaghi I.J. & Balestra G.M. (2007). Pre-emergence herbicides influence the efficacy of fungicides in controlling cotton seedling damping off in the field. International Journal of Agricultural Research, 2007. No 2. Р. 1049-1053. [in English].

Hill T.L. & Stratton G.W. (1991). Interactive effects of the fungicide chlorothalonil and the herbicide metribuzin towards the fungal pathogen Alternariasolani. Bulletin of Environmental Contamination and Toxicology, 1991. No 47. Р. 97-103. [in English].

How to Cite
Storchous , I., & Stefkivska , Y. (2019). Ammonium glufosinate and triazine herbicides have side effects on soil microorganisms and pathogens. Quarantine and Plant Protection, (9-10), 6-11.